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Abstract
We study finite-dimensional reductions of the dispersionless 2D Toda hierarchy
showing that the consistency conditions for such reductions are given by a
system of radial Loewner equations. We then construct their Hamiltonian
structures, following an approach proposed by Ferapontov.

PACS numbers: 02.30.Ik, 02.30.Hq

1. Introduction

The dispersionless KP and 2D Toda hierarchies are the main examples of hierarchies of
equations of hydrodynamic type with an infinite number of dependent variables [10]. The
problem of the finite-dimensional reduction of these hierarchies consists in finding constraints
which are compatible with the flows of the hierarchy and such that the constrained flows are
described by a system of equations of hydrodynamic type with a finite number of dependent
variables.

In the case of the dispersionless KP hierarchy (or Benney hierarchy), it was shown
[5, 6] that the equations describing the compatibility of the constraints are a system of chordal
Loewner equations. Recently, the Hamiltonian formulation of such reductions have been
studied, in terms of nonlocal [3] and purely nonlocal [4] Poisson brackets.

In this paper, we consider the N-dimensional reductions of the dispersionless 2D Toda
hierarchy. In section 3, we show that the consistency of a reduction is equivalent to a system of
radial Loewner equations. We show that the compatibility conditions for such a system is given
by Gibbons–Tsarev equations from which it follows that the reductions are semi-Hamiltonian.
We present generating functions for the flows (or symmetries) of the reductions and give a
proof of the functional dependence of the two Lax functions. In section 4, we consider the
Hamiltonian structures of the reductions. Following an approach of Ferapontov we show that
it is possible to factorize the Riemann curvature tensor, associated with a diagonal metric, in
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terms of the symmetries of the reduction. From such factorization, the existence of nonlocal
Hamiltonian structures follows. In section 5, purely nonlocal Hamiltonian structures for the
reductions are studied and in section 6 an example is considered.

2. The dispersionless 2D Toda hierarchy

The Lax representation of the dispersionless two-dimensional Toda hierarchy [10] is defined
in terms of two formal Laurent power series in p

λ = p + u0 + u1p
−1 + · · · (1a)

λ̄ = ū−1p
−1 + ū0 + ū1p + · · · , (1b)

where the dependent variables uk and ūk depend on the spatial variable x and on two infinite
sets of independent variables tn and t̄n for n > 0. The Lax equations are

λtn = {Bn, λ}, λ̄tn = {Bn, λ̄}, (2a)

λt̄n = {B̄n, λ}, λ̄t̄n = {B̄n, λ̄}, (2b)

where the Poisson brackets are given by

{f, g} = p
∂f

∂p

∂g

∂x
− p

∂g

∂p

∂f

∂x
,

and we define

Bn := 1

n
(λn)+ B̄n := 1

n
(λ̄n)−.

We denote by ( )+ and ( )− the projections of a power series in p to positive and strictly
negative powers of p, respectively. In this formal setting, the Lax equations are considered as
generating functions of an infinite set of involutive evolutionary equations of hydrodynamic
type for the coefficients uk and ūk .

In the following we will consider λ and λ̄ as univalent analytic functions on certain
domains in the complex plane, having the expansions (2) at p = ∞, 0, respectively.

3. Reductions of the 2D Toda hierarchy

In this section we consider the reductions of the dispersionless 2D Toda hierarchy and their
relation with systems of radial Loewner equations. Similar results were first obtained for
the dispersionless KP case by Gibbons and Tsarev [5, 6]; other examples—including the
dispersionless 2D Toda hierarchy—have been studied, for instance, in [7, 9, 11, 12, 14].

A reduction of the dispersionless 2D Toda hierarchy is given by a choice of two families
of functions

λ = λ(p; λ1, . . . , λN), λ̄ = λ̄(p; λ1, . . . , λN), (3)

on the p-plane depending on N parameters λ1, . . . , λN such that the flows (2) are consistent
with (3) and are induced by diagonal hydrodynamic type equations

∂λi

∂tn
= vi

(n)

∂λi

∂x
,

∂λi

∂t̄n
= v̄i

(n)

∂λi

∂x
, (4)

where vi
(n) and v̄i

(n) are suitable functions of λ1, . . . , λN , depending on the choice of λ and λ̄.
We will denote by vi = vi

(1) the first of these functions.
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Proposition 1. The functions (3) with (4) provide a reduction of the dispersionless 2D Toda
hierarchy if and only if the following system of Loewner equations is satisfied:

∂λ

∂λi

= pλp

p − vi

∂u0

∂λi

,
∂λ̄

∂λi

= pλ̄p

p − vi

∂u0

∂λi

. (5)

Moreover, the functions vi
(n) and v̄i

(n) appearing in (4) are given by

vi
(n) =

(
p

∂Bn

∂p

)
|p=vi

, v̄i
(n) =

(
p

∂B̄n

∂p

)
|p=vi

. (6)

Proof. Assuming the independence of the λi
x , the Lax equations (2a)—together with

conditions (3) and (4)—are equivalent to the following set of equations:

∂λ

∂λi

= pλp

p(Bn)p − vi
(n)

∂Bn

∂λi

,
∂λ̄

∂λi

= pλ̄p

p(Bn)p − vi
(n)

∂Bn

∂λi

. (7)

Conditions for the flow t̄n are similar

∂λ

∂λi

= pλp

p(B̄n)p − v̄i
(n)

∂B̄n

∂λi

,
∂λ̄

∂λi

= pλ̄p

p(B̄n)p − v̄i
(n)

∂B̄n

∂λi

. (8)

For n = 1, we have B1 = p + u0; therefore, in this case equations (7) are exactly the Loewner
system (5). We prove now that the other conditions (7)—for n � 2—and (8) follow from (5).
To see this, consider the first equation in (7) for n � 2. Using Loewner equations, we have

∂Bn

∂λi

= 1

n

∂(λn)+

∂λi

= 1

n

(
p(λn)p

p − vi

)
+

∂u0

∂λi

.

On the other hand, using the fact that 1
p−vi = (

1
p−vi

)
−, we see that

1

n

(
p(λn)p

p − vi

)
+

= 1

n

(
(p(λn)p)+ − ((p(λn)p)+)|p=vi

p − vi

)
+

= p(Bn)p − vi
(n)

p − vi
.

Using these formulas we obtain

pλp

p(Bn)p − vi
(n)

∂Bn

∂λi

= pλp

p − vi

∂u0

∂λi

;

hence, the first equation in (7) is a consequence of the Loewner equations (5). Analogously,
all other conditions (7) and (8) are proved. �

The Loewner equations can be equivalently written in terms of ϕ := log ū−1 instead of
u0. Indeed, expanding both sides of the Loewner equations (5) at p ∼ ∞, we get

∂u0

∂λi

= vi ∂ϕ

∂λi

, (9)

and substituting back into the Loewner system, we obtain

∂λ

∂λi

= vipλp

p − vi

∂ϕ

∂λi

,
∂λ̄

∂λi

= vipλ̄p

p − vi

∂ϕ

∂λi

. (10)

We derive now the compatibility conditions of the above system.

Proposition 2. The Loewner equations (10) are compatible if and only if the functions vi

and ϕ satisfy the Gibbons–Tsarev equations

3
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∂vi

∂λj

= vivj

vj − vi

∂ϕ

∂λj

, i �= j, (11a)

∂2ϕ

∂λi∂λj

= 2
vivj

(vi − vj )2

∂ϕ

∂λi

∂ϕ

∂λj

, i �= j. (11b)

Proof. Spelling out the compatibility conditions

∂

∂λi

∂

∂λj

λ = ∂

∂λj

∂

∂λi

λ, (12)

we obtain

∂iu0∂jv
i

(p − vi)2
− ∂ju0∂iv

j

(p − vi)2
+ ∂i∂ju0

(
1

p − vi
− 1

p − vj

)

+ p
∂iu0∂ju0

(p − vi)(p − vj )

(
1

p − vi
− 1

p − vj

)
= 0,

where we have used the notation ∂i = ∂
∂λi

. The Gibbons–Tsarev equations can be recovered

as the two leading coefficients of the expansion for p ∼ vi . It is easily checked by direct
substitution in (12) that the Gibbons–Tsarev equations are also sufficient for the compatibility.�

Using the Gibbons–Tsarev system (11), it is easy to prove that the characteristic velocities
vi of the reduction of the dispersionless 2D Toda hierarchy satisfy the condition

∂

∂λk

⎛
⎝ ∂vi

∂λj

vi − vj

⎞
⎠ = ∂

∂λj

(
∂vi

∂λk

vi − vk

)
, i �= j �= k �= i, (13)

known in the literature as semi-Hamiltonian condition [13]. The above system arises as the
compatibility condition of the linear system

∂wi

∂λj

=
∂vi

∂λj

vi − vj
(wi − wj), i �= j, (14)

which gives the characteristic velocities wi of the symmetries of the reduction. Therefore,
every N-tuple of functions defined in (6) automatically satisfies the semi-Hamiltonian condition
(13).

Next, we define a pair of generating functions for the symmetries.

Lemma 3. The functions defined by

Wi(λ) = p(λ)

p(λ) − vi
, W̄ i(λ̄) = p(λ̄)

p(λ̄) − vi
(15)

where p(λ) := λ(p)−1 and p(λ̄) := λ̄(p)−1 are the inverse functions of λ(p) and λ̄(p)

respectively, are generating functions for the characteristic velocities (6), namely

Wi(λ) =
∑
n�0

vi
(n)λ

−n, W̄ i(λ̄) =
∑
n�1

v̄i
(n)λ̄

−n.

Proof. The function Wi has an asymptotic expansion for λ �→ ∞ of the form

Wi(λ) =
∑
n�0

ci
(n)λ

−n.

4
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We want to prove that ci
(n) = vi

(n). Clearly, the coefficient of λ−n in the expansion of Wi is
given by

ci
(n) = −Res

λ=∞
Wi(λ)λn−1 dλ.

Expressing the residue in the variable p we rewrite it as

−1

n
Res
p=∞

p

p − vi
(λn)p dp = −vi

n
Res
p=∞

(λn)+

(p − vi)2
dp,

where on the right-hand side we have integrated per parts and dropped the irrelevant negative
powers of p in the numerator. We are left with the residue of a rational expression with poles
only at p = ∞, vi . Hence it is equal to

ci
(n) = vi

n
Res
p=vi

(λn)+

(p − vi)2
dp = vi

n
(((λn)+)p)|p=vi

= vi
(n).

An analogous proof holds for the generating function W̄ i . �

In the next section we will find convenient to use different generating functions, which
are obtained (up to a sign) by differentiating Wi and W̄ i with respect to λ:

wi(λ) = vi

(p(λ) − vi)2

∂p(λ)

∂λ
=

∑
n�1

nvi
(n)λ

−n−1, (16a)

w̄i(λ̄) = vi

(p(λ̄) − vi)2

∂p(λ̄)

∂λ̄
=

∑
n�1

nv̄i
(n)λ̄

−n−1. (16b)

In the reductions of the dispersionless 2D Toda hierarchy one needs only one of the two
Lax functions λ, λ̄; indeed, we have the following.

Proposition 4. For a reduction of the dispersionless 2D Toda hierarchy, the univalent
functions λ and λ̄ are functionally dependent on the common domain of definition.

Proof. On any domain of the complex plane where λ̄ is invertible, denote p(λ̄, λ1, . . . , λN)

its inverse and define

F(λ̄) = λ(p(λ̄, λ1, . . . , λN), λ1, . . . , λN),

which is well defined on the image by λ̄ of the intersection of the domains of definition of λ

and λ̄. A priori F might depend on λ1, . . . , λN ; however, since λ and λ̄ satisfy the Loewner
equations (5), we have

∂λ

∂λi

= ∂F
∂λ̄

∂λ̄

∂λi

+
∂F
∂λi

= ∂F
∂λ̄

pλ̄p

p − vi

∂u0

∂λi

+
∂F
∂λi

= ∂λ

∂λi

+
∂F
∂λi

,

hence ∂F
∂λi

= 0. This shows that λ can be expressed in terms of λ̄ by the function F which is
independent of the parameters λ1, . . . , λN . �

In particular, it follows from the previous proposition that λ and λ̄ have the same critical
points. Moreover, we have a relation between the critical points of λ and the characteristic
velocities of the reduction. Indeed, evaluating the 2D Toda equations at a critical point, one
easily proves that

5



J. Phys. A: Math. Theor. 43 (2010) 045201 G Carlet et al

Proposition 5. If p̂ = p̂(λ1, . . . , λN) is a critical point of λ, i.e. λp(p̂) = 0 and
λ̂ := λ(p̂; λ1, . . . , λN) the corresponding critical value, then

∂λ̂

∂tn
= v(n)

∂λ̂

∂x
,

∂λ̂

∂t̄n
= v̄(n)

∂λ̂

∂x
,

with

v(n) =
(

p
∂Bn

∂p

)
|p=p̂

, v̄(n) =
(

p
∂B̄n

∂p

)
|p=p̂

.

On the other hand, under generic assumptions, the characteristic velocities are critical
points of λ (and λ̄):

Proposition 6. The characteristic velocities vj are critical points of λ and the Riemann
invariants can be chosen to be the corresponding critical values.

Proof. From the Loewner equation evaluated at p = vj one has

∂λ

∂λi |p=vj

(vj − vi) = vjλp(vj )
∂u0

∂λi

,

which for i = j implies λp(vj ) = 0. �

In the rest of the paper we will assume that the Riemann invariants λi are the critical
values corresponding to the critical points vi . Under this assumption, we have the following

Lemma 7. The formula

∂ϕ

∂λi

= 1

(vi)2λpp(vi)

holds for any reduction of the Toda hierarchy.

Proof. Considering the Loewner equation (5) and taking the limit for p → vi , one gets

1 = lim
p→vi

pλp(p)

p − vi

∂u0

∂λi

= lim
p→vi

p(λp(p) − λp(vi))

p − vi

∂u0

∂λi

= viλpp(vi)
∂u0

∂λi

,

which holds since vi is a critical point of λ. The thesis follows from identity (9). �

4. Hamiltonian formulation

We have seen that the reductions of the dispersionless 2D Toda hierarchy are semi-Hamiltonian
systems of hydrodynamic type. In [1] Ferapontov conjectured that any semi-Hamiltonian
system is always Hamiltonian with respect to suitable, possibly nonlocal, Hamiltonian
operators (see also [2]), which are obtained by the following construction:

(1) Find the general solution of the system

∂

∂λj

ln
√

gii =
∂vi

∂λj

vj − vi
, i �= j. (17)

To this purpose it is sufficient to find one solution gii of (17), since the general solution
is gii

φi (λi )
, where φi are arbitrary functions of one argument. The functions gii define the

non-vanishing contravariant components of a diagonal metric.

6
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(2) Write the non-vanishing components of the curvature tensor in terms of solutions wi
α of

the linear system (14):

R
ij

ij =
∑

α

εαwi
αwj

αεα = ±1. (18)

Given a solution of (17) and the quadratic expansion (18) of the associated curvature
tensor, the Hamiltonian structure is given by

�ij = giiδij d

dx
+ 


ij

k (λ)λk,x +
∑

α

εαwi
αλi,x

(
d

dx

)−1

wj
αλj,x,

where 

ij

k = −gii

j

ik and the 

j

ik are the Christoffel symbols of the metric g. We recall
that the index α can take values on a finite or infinite—even continuous—set.

We now apply the above procedure to find a Hamiltonian formulation for reductions of
the dispersionless 2D Toda hierarchy. Using the Gibbons–Tsarev equations it is easy to check
that

Proposition 8. The general solution of the system (17) is given by

gii = 1

φi(λi)

∂ϕ

∂λi

, (19)

where each φi is a function of the sole variable λi .

Let us consider first the case of potential metric, given by

gij = ∂ϕ

∂λi

δij . (20)

Following the Ferapontov’s procedure, we have now to find a quadratic expansion of the
form (18) for the curvature tensor of the metric (20). For this purpose, it is convenient to
introduce the following function:

F(p(λ); λ1, . . . , λN) = ∂p

∂λ
+

N∑
j=1

∂p

∂λj

,

which can be expressed in terms of the variable p as

F(p; λ1, . . . , λN) = 1

λp

−
N∑

j=1

pvj

p − vj

∂ϕ

∂λj

. (21)

Here we used the identity

∂p

∂λi

= pvi

vi − p

∂ϕ

∂λi

, (22)

which follows from the Loewner equations (10). We need the following technical lemma:

Lemma 9. The function F is analytic at p = vi , i = 1, . . . , N, and satisfies

F|p=vi = δ(vi), (23)

∂F

∂p |p=vi

= δ

(
log

√
∂ϕ

∂λi

)
+

δ(vi)

vi
, (24)

7
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where the operator δ is given by

δ :=
N∑

k=1

∂

∂λk

.

Proof. Using lemma 7, it is easy to see that the poles of 1
λp

in vi cancel out in (21); hence,

F is analytic at p = vi . Moreover, if we consider the compatibility condition between the
Loewner system (22) and the equation

∂p

∂λ
= F +

N∑
j=1

pvj

p − vj

∂ϕ

∂λj

,

we obtain

0 = ∂2p

∂λi∂λ
− ∂2p

∂λ∂λi

= − (vi)2

(p − vi)2

∂ϕ

∂λi

[F(p) − δ(vi)] +
(vi)2

p − vi

∂ϕ

∂λi

×
[
−Fp(p) + δ

(
log

∂ϕ

∂λi

)
+ 2

δ(vi)

vi

]
+ regular function at p = vi. (25)

Multiplying by (p − vi)2 and taking the limit for p → vi we get

(vi)2 ∂ϕ

∂λi

(F (vi) − δ(vi)) = 0,

which, under the assumptions ∂ϕ

∂λi
�= 0, vi �= 0, implies identity (23). Computing the residue

of (25) at p = vi one obtains (24). �

We are now in the position to find a quadratic expansion for the curvature of the potential
metric (20). Indeed, let 
i be a small contour surrounding the point p = vi counter-clockwise
and let Ci be the image of 
i under the map λ. Let 
 := ⋃N

i=1 
i and C := ⋃N
i=1 Ci .

Theorem 10. The non-vanishing components of the Riemann tensor of the potential metric
(20) admit the following quadratic expansion

R
ij

ij = − 1

2π i

∫
C

wi(λ)wj (λ) dλ, i �= j, (26)

where the wi(λ) are the generating functions of the symmetries defined in (16a).

Proof. In order to determine the Riemann curvature tensor for the metric (20), we use
the following well-known fact. The only non-zero components of the curvature tensor of a
diagonal metric gij = δij gii having symmetric rotation coefficients βij := ∂i

√
gjj√
gii

are

Rijij = −√
gii

√
gjj δ(βij ), i �= j. (27)

Using the Gibbons–Tsarev equations, we find that in our case the rotation coefficients are
given by

βij = 1

2

∂i∂jϕ√
∂iϕ

√
∂jϕ

=
√

∂iϕ
√

∂jϕ
vivj

(vi − vj )2
, i �= j.

Substituting into (27) and raising the first two indices, we obtain the formula

R
ij

ij = − (vi + vj )[viδ(vj ) − vj δ(vi)]

(vi − vj )3
− vivj [δ(log

√
∂iϕ) + δ(log

√
∂jϕ)]

(vi − vj )2
, i �= j,

(28)

8
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which holds for any reduction. We can now use lemma 9 to write (28) in the form

R
ij

ij = − vivj

(vi − vj )2

(
∂F

∂p
(vi) +

∂F

∂p
(vj )

)
+

2vivj

(vi − vj )3
(F (vi) − F(vj )).

Moreover, using the fact that F(p) is regular at all p = vk one can rewrite this expression in
terms of residues, obtaining

R
ij

ij = − 1

2π i

∫



F (p)vivj

(p − vi)2(p − vj )2
dp, i �= j.

Due to (21), the above integral splits in two

1

2π i

∫



F (p)vivj

(p − vi)2(p − vj )2
dp = vivj

2π i

∫



1
λ′(p)

(p − vi)2(p − vj )2
dp

− vivj

2π i

∫



∑N
k=1

pvk∂kϕ

p−vk

(p − vi)2(p − vj )2
dp,

and the second term of the right-hand side above is zero, for all poles of the rational integrand
lie inside the contour 
. Hence, we have

R
ij

ij = −vivj

2πi

∫



1
λ′(p)

(p − vi)2(p − vj )2
dp,

and after a change of the variable of integration, we get

R
ij

ij = − 1

2πi

∫
C

vi ∂p

∂λ

(p(λ) − vi)2

vj ∂p

∂λ

(p(λ) − vj )2
dλ,

which is exactly formula (26). �

We can now formulate our main theorem on the Hamiltonian representation of the
hierarchy in the case of potential metric.

Theorem 11. The reduction of the Toda hierarchy associated with the function
λ(p, λ1, . . . , λN) is Hamiltonian with the Hamiltonian structure

�ij = 1

∂iϕ
δij d

dx
+ 


ij

k λk
x − 1

2π i

∫
C

vi ∂p

∂λ
λi

x

(p(λ) − vi)2

(
d

dx

)−1 vj ∂p

∂λ
λ

j
x

(p(λ) − vj )2
dλ.

Here



ij

k = − 1

2∂iϕ∂jϕ
(δij ∂i∂kϕ + δjk∂i∂jϕ − δik∂i∂jϕ)

are the Christoffel symbols of the metric.

In the general case, with the non-potential metric

(gφ)ii = 1

φi(λi)

∂ϕ

∂λi

, (29)

we can prove that we have a similar expansion of the curvature tensor, given by

R
ij

ij = −vivj

2πi

N∑
k=1

∫

k

1
λp

(p − vi)2(p − vj )2
φk(λ(p)) dp.

Therefore, we have the following family of Hamiltonian structures:

�ij = φi

1

∂iϕ
δij d

dx
+ 


ij

k λk
x − 1

2π i

N∑
k=1

∫
Ck

vi ∂p

∂λ
λi

x

(p(λ) − vi)2

(
d

dx

)−1 vj ∂p

∂λ
λ

j
x

(p(λ) − vj )2
φk(λ) dλ,

for any choice of the functions φi .

9



J. Phys. A: Math. Theor. 43 (2010) 045201 G Carlet et al

Remark 12. Reductions of the 2D dispersionless Toda hierarchy, as well as their Hamiltonian
structures, have also been considered by Harnad et al [8], in the cases where λ and λ̄ are
polynomial, rational and logarithmic functions, and under the constraints of the string equation
{λ, λ̄} = 1. We recall that in these cases the reductions obtained are completely integrable
systems of ordinary differential equations. Note that, due to the string equation, in this case
the functions λ and λ̄ are functionally independent as functions of x and p, otherwise their
Poisson bracket would be zero.

5. Purely nonlocal Hamiltonian structures

In addition to the nonlocal Ferapontov-type Hamiltonian operators, we can associate with any
reduction of the dispersionless 2D Toda hierarchy a family of purely nonlocal Hamiltonian
operators. In the semi-Hamiltonian case, it has been shown in [4] that if Wi

α are the
characteristic velocities of pairwise commuting diagonal hydrodynamic flows, the operator

�ij =
∑

α

εαWi
αλi

x

(
d

dx

)−1

Wj
α λj

x,

defines a purely nonlocal Hamiltonian structure provided∑
α

εαWi
αWj

α = 0, i �= j.

Moreover

giiδij =
∑

α

εαWi
αWj

α .

defines a solution to (17).
For the reductions of the dispersionless 2D Toda hierarchy, the following result holds.

Lemma 13. The contravariant components of the metric (29) admit the following quadratic
expansion

gii
φ δij = φi(λi)

1

∂iϕ
δ ij = 1

2πi

N∑
k=1

∫
Ck

W i(λ)Wj (λ)φk(λ) dλ,

where the Wi(λ) are the generating functions of the symmetries (15).

Proof. The proof is a straightforward computation of the integral:

1

2π i

N∑
k=1

∫
Ck

W i(λ)Wj(λ)φk(λ) dλ =
N∑

k=1

Res
λ=λk

[
p(λ)2φk(λ) dλ

(p(λ) − vi)(p(λ) − vj )

]

=
N∑

k=1

Res
p=vk

[
p2 ∂λ

∂p

(p − vi)(p − vj )
φk(λ(p)) dp

]

= φi(λi)(v
i)2λ′′(vi)δij ,

the last step being due to the fact that p = vk are critical points of λ, so that the differential
turns out to be regular at all these points for i �= j , and also for i = j and k �= i. Making use
of lemma 7, we obtain the desired result. �

Therefore, the purely nonlocal operators associated with the reductions of the
dispersionless 2D Toda hierarchy are

�ij = 1

2π i

N∑
k=1

∫
Ck

p(λ)

p(λ) − vi
λi,x

(
d

dx

)−1
p(λ)

p(λ) − vj
λj,xφk(λ) dλ.

10
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6. An example: the dispersionless Toda chain

The simplest example of reduction is the dispersionless Toda chain, which is given by the
constraint

λ = λ̄ = p + v +
eu

p
.

The characteristic velocities are given by the critical points

v1 = e
u
2 , v2 = −e

u
2

and the Riemann invariants by the critical values of λ = λ̄ :

λ1 = v + 2e
u
2 , λ2 = v − 2e

u
2 .

In this simple example we can explicitly write λ, λ̄, the characteristic velocities, u0 and ϕ in
terms of the Riemann invariants, i.e.

λ = λ̄ = p +
λ1 + λ2

2
+

(
λ1 − λ2

4

)2

p−1,

and

v1 = λ1 − λ2

4
, v2 = λ2 − λ1

4
, u0 = v = λ1 + λ2

2
, ϕ = u = 2 log

λ1 − λ2

4
.

It is easy to check that these functions satisfy Loewner (5) and Gibbons–Tsarev (11) equations.
Let us compute the Hamiltonian operators associated with the metrics

gij = ∂iu

λk
i

δij

for k � 0, which clearly solve (17). Explicitly

g11 = 2λ−k
1

λ1 − λ2
, g22 = 2λ−k

2

λ2 − λ1
.

In this case the curvature can be expressed as

R12
12 = −v1v2

2π i

∫
C

(
∂p

∂λ

)2
λk

(p(λ) − v1)2(p(λ) − v2)2
dλ,

or alternatively as

R12
12 = −v1v2

2∑
i=1

Res
p=vi

(
λ(p)k 1

λ
′
(p)

(p − v1)2(p − v2)2
dp

)
.

For k = 0, 1, 2, the Abelian differential

λ(p)k 1
λ

′
(p)

(p − v1)2(p − v2)2
dp

has poles only at the points p = v1, p = v2, and therefore the curvature vanishes and the
associated Hamiltonian operators are local.

For k > 2 new poles appear at p = 0 and p = ∞. Since the sum of the residues of
an Abelian differential on a compact Riemann surface is zero, we can substitute the sum of
residues at p = v1, v2 with minus the sum of residues at p = 0 and p = ∞, obtaining

R12
12 = v1v2

(
Res
p=0

+ Res
p=∞

) λ(p)k 1
λ

′
(p)

(p − v1)2(p − v2)2
dp.

11
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Taking into account that λ(0) = λ(∞) = ∞, we easily obtain the counterpart of the above
formulas in the λ-plane:

R12
12 = 2Res

λ=∞
v1 ∂p

∂λ
v2 ∂p

∂λ
λk

(p − v1)2(p − v2)2
dλ = 2Res

λ=∞
(w1(λ)w2(λ)λk dλ).

Since the expansions of w1(λ) and w2(λ) near λ = ∞ have the form

w1(λ) =
∞∑

k=1

kv1
(k)λ

−k−1 = λ1 − λ2

4λ2
+

(λ1 − λ2)(3λ1 + λ2)

8λ3
+ · · ·

w2(λ) =
∞∑

k=1

kv2
(k)λ

−k−1 = λ2 − λ1

4λ2
+

(λ2 − λ1)(3λ2 + λ1)

8λ3
+ · · · ,

we obtain the quadratic expansion of the Riemann tensor

R12
12 = −2

∑
l+s=k−1

lv1
(l)sv

2
(s)

and we can immediately write the corresponding nonlocal Hamiltonian operator �ij . From
the last formula we have that the nonlocal tail of, e.g. �12 is given by

−2
∑

l+s=k−1

lv1
(l)λ1,x

(
d

dx

)−1

sv2
(s)λ2,x .

Similar formulas can be obtained in this example for purely nonlocal Hamiltonian structures.
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